Update: 新增指定量分钟价格计算
This commit is contained in:
parent
d5a2d9cb9c
commit
411e1a3f78
|
@ -0,0 +1,33 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def amount_specified(
|
||||
min_data: pd.DataFrame,
|
||||
post_adj_factor: pd.DataFrame,
|
||||
min_amount: float=0.
|
||||
):
|
||||
"""
|
||||
计算指定金额下的平均后复权价格
|
||||
|
||||
Args:
|
||||
min_data (pd.DataFrame): 指定日期分钟数据,需至少包含代码(stock_code)、分钟(Time)、价格(price)、成交量(vol)、成交金额(amount)列
|
||||
post_adj_factor (pd.DataFrame): 后复权因子数据,需至少包含股票、后复权因子
|
||||
min_amount (float): 指定最小金额下的平均价
|
||||
"""
|
||||
|
||||
# 按照指定最小量获取平均价格
|
||||
stock_amt = min_data.pivot_table(index='Time', columns='stock_code', values='amount').cumsum()
|
||||
stock_vol = min_data.pivot_table(index='Time', columns='stock_code', values='vol').cumsum()
|
||||
amount_price = stock_amt / stock_vol
|
||||
amount_price.iloc[1:] = amount_price.iloc[1:].where(stock_amt <= min_amount, np.nan)
|
||||
amount_price = amount_price.unstack().reset_index()
|
||||
amount_price.columns = ['stock_code', 'time', 'price']
|
||||
amount_price = amount_price.dropna(subset=['price']).drop_duplicates(subset='stock_code', keep='last')
|
||||
# 计算后复权价格
|
||||
amount_price = amount_price.merge(post_adj_factor, on=['stock_code'], how='left').dropna(subset=['factor'])
|
||||
amount_price['open_post'] = amount_price['price'] * amount_price['factor']
|
||||
|
||||
return amount_price[['stock_code','open_post']]
|
||||
|
||||
|
|
@ -2,4 +2,5 @@ from account import Account
|
|||
from trader import Trader
|
||||
from spread_backtest import Spread_Backtest
|
||||
|
||||
__all__ = ['Account', 'Trader', 'Spread_Backtest']
|
||||
|
||||
__all__ = ['Account', 'Trader', 'Spread_Backtest', 'Specified_Price']
|
Loading…
Reference in New Issue